Due date: Apr 6 (Thu)

Exercises from Kaplansky's book.

Sec 4.3: 2

1. Define a metric d on \mathbb{N} such that for every $n \in \mathbb{N}$, the set $[n, \infty)_{\mathbb{N}} := \{k \in \mathbb{N} : k \ge n\}$ is an open, as well as a closed, ball centered at n, i.e. there is $r_n > 0$ such that

$$B_d(n, r_n) = \bar{B}_d(n, r_n) = [n, \infty)_{\mathbb{N}}.$$

- 2. Show that in any metric space, every open set is a union of open balls of rational radius.
- **3.** Consider \mathbb{R} with its usual metric.
 - (a) Show that every open set is a union of open intervals with rational endpoints.
 - (b) What is the cardinality of the set \mathcal{U} of all open intervals with rational endpoints?
 - (c)* (Optional) How many open sets are there in \mathbb{R} ? More precisely, letting \mathcal{T} denote the set of all open subsets of \mathbb{R} , is $\mathcal{T} \equiv \mathbb{R}$?

HINT: Define a surjection $\mathscr{P}(\mathcal{U}) \twoheadrightarrow \mathcal{T}$.

4. Let (X, d) be a metric space. Define the following two metrics on X^2 :

$$d_{\infty}^{(2)}((x_1, y_1), (x_2, y_2)) := \max \{ d(x_1, x_2), d(y_1, y_2) \}$$

$$d_1^{(2)}((x_1, y_1), (x_2, y_2)) := d(x_1, x_2) + d(y_1, y_2).$$

Show that regardless which of these two metrics we take as $d^{(2)}$, $(x_n, y_n) \to (x, y)$ in the metric space $(X^2, d^{(2)})$ if and only if $x_n \to x$ and $y_n \to y$ in (X, d).

- 5. Let $(x_n)_n$ be a sequence in the Cantor space $2^{\mathbb{N}}$ (with the usual metric). Prove that $x_n \to x$ if and only if for each fixed index $i \in \mathbb{N}$, $\forall^{\infty} n \ x_n(i) = x(i)$.
- **6.** Let (X, d) be a metric space. For a set $A \subseteq X$, define its *diameter* by

$$\operatorname{diam}(A) := \sup_{x,y \in A} d(x,y).$$

Show that for any convergent¹ sequence $(x_n)_n \subseteq X$ has finite diameter, i.e. diam $(\{x_n : n \in \mathbb{N}\}) < \infty$.

¹Call a sequence $(x_n)_n \subseteq X$ convergent if it has a limit, i.e. there is $x \in X$ such that $x_n \to x$.