Exercises from Kaplansky's book.

Sec 4.3: 2

1. Define a metric d on \mathbb{N} such that for every $n \in \mathbb{N}$, the set $[n, \infty)_{\mathbb{N}}:=\{k \in \mathbb{N}: k \geq n\}$ is an open, as well as a closed, ball centered at n, i.e. there is $r_{n}>0$ such that

$$
B_{d}\left(n, r_{n}\right)=\bar{B}_{d}\left(n, r_{n}\right)=[n, \infty)_{\mathbb{N}}
$$

2. Show that in any metric space, every open set is a union of open balls of rational radius.
3. Consider \mathbb{R} with its usual metric.
(a) Show that every open set is a union of open intervals with rational endpoints.
(b) What is the cardinality of the set \mathcal{U} of all open intervals with rational endpoints?
(c)* (Optional) How many open sets are there in \mathbb{R} ? More precisely, letting \mathcal{T} denote the set of all open subsets of \mathbb{R}, is $\mathcal{T} \equiv \mathbb{R}$?
Hint: Define a surjection $\mathscr{P}(\mathcal{U}) \rightarrow \mathcal{T}$.
4. Let (X, d) be a metric space. Define the following two metrics on X^{2} :

$$
\begin{aligned}
& d_{\infty}^{(2)}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right):=\max \left\{d\left(x_{1}, x_{2}\right), d\left(y_{1}, y_{2}\right)\right\} \\
& d_{1}^{(2)}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right):=d\left(x_{1}, x_{2}\right)+d\left(y_{1}, y_{2}\right) .
\end{aligned}
$$

Show that regardless which of these two metrics we take as $d^{(2)},\left(x_{n}, y_{n}\right) \rightarrow(x, y)$ in the metric space $\left(X^{2}, d^{(2)}\right)$ if and only if $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$ in (X, d).
5. Let $\left(x_{n}\right)_{n}$ be a sequence in the Cantor space $2^{\mathbb{N}}$ (with the usual metric). Prove that $x_{n} \rightarrow x$ if and only if for each fixed index $i \in \mathbb{N}, \forall^{\infty} n x_{n}(i)=x(i)$.
6. Let (X, d) be a metric space. For a set $A \subseteq X$, define its diameter by

$$
\operatorname{diam}(A):=\sup _{x, y \in A} d(x, y)
$$

Show that for any convergent ${ }^{1}$ sequence $\left(x_{n}\right)_{n} \subseteq X$ has finite diameter, i.e.

$$
\operatorname{diam}\left(\left\{x_{n}: n \in \mathbb{N}\right\}\right)<\infty
$$

[^0]
[^0]: ${ }^{1}$ Call a sequence $\left(x_{n}\right)_{n} \subseteq X$ convergent if it has a limit, i.e. there is $x \in X$ such that $x_{n} \rightarrow x$.

